Show / Hide Table of Contents

    The Network Design Problem

    Visualization

    The image below visualizes the data created below. In this example we have five cities and six potential edges. We want to create a cost optimal network of the nodes.

    Prerequisites

    • Please look at Getting Started first for the most basic functions and the setup of OPTANO.Modeling

    The mathematical Model

    Sets: \begin{array}{l} V = \text{Set of }n\text{ nodes}\newline E = \text{Set of edges }(VxV) \end{array}

    Parameters: $$d_{i} = \text{Demand of node }i\text{, a negative demand is supply }$$ $$fc_{ij} = \text{Flow cost of edge }i,j\text{, for a single unit }$$ $$dc_{ij} = \text{Design cost of edge }i,j\text{ }$$ $$c_{ij} = \text{Max capacity of edge }i,j\text{ }$$ $$BigM = \text{A large number, f.e. sum of all positive demands }$$

    Variables: $$x_{ij} \in \mathbb{R}^+ = \text{Flow of units on edge }i,j\text{ }$$ $$y_{ij} = \begin{cases} 1, \text{ if edge}e\text{ is used }\newline 0, \text{ else} \end{cases}$$

    Objective: $$min \sum\limits_{(i,j)\in E} dc_{ij} y_{ij} + fc_{ij} x_{ij}$$

    Restrictions: \begin{array}{l} \sum\limits_{{i:(i,j)\in E}} x_{ij} = \sum\limits_{{i:(j,i)\in E}} x_{ji} + d_{j} & \qquad \forall j\in V & \text{(Flow balance, incoming equals outgoing plus demand)}\newline x_{ij} \leq c_{ij} & \qquad \forall i,j\in E & \text{(No edge must exceed its maximum capacity)}\newline y_{ij} \times BigM \geq x_{ij} & \qquad \forall i,j\in E & \text{(A edge is used, if any flow is given)}\newline \end{array}

    Create your own Network design problem

    • Step 1: Create Business objects for your Model
    • Step 2: Create your Model Class
    • Step 3: Retrieve the Solution of your Model
    Back to top Copyright © OPTANO GmbH generated with DocFX
    Privacy Policy | Impressum – Legal Notice